

Can we find back-azimuth to an infrasonic source using seismo
seismometer and microphone? How robust is the technique?
Motivation \& Key Points
A single seismo-acoustic station is more economical than an array of microphones or seismometers - Deploying a microphone with a seismometer enables distinguishing subsurface from subaerial sources - eparating the microphone and seismometer by 15 of meters makes
Infrasound and ground-coupled airwave traces have 90 degree phase

- Back-azimuth determined with 2 microphones produces non-unique solution. By replacing one microphone
with a 3 -component seismometer, we aim to determine a unique solution by integrating particle motion.

- Acoustic wave shakes the ground - Ground shaking propagates as a Rayleigh
surface wave - surface wave
- Rayleigh waves have retrograde particle
motion

$$
\begin{aligned}
& \text { vertical and radial components } \\
& \text { - G As travel at the speed of soun }
\end{aligned}
$$

$$
\begin{aligned}
& \text { vertica and raclarial omponents } \\
& \sim \sim 343 \\
& \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Determining signal from wind noise

$$
\begin{aligned}
& 343 \mathrm{~m} / \mathrm{s} \\
& \text { Figure }
\end{aligned}
$$

 $H_{m o}=\frac{-\pi-1 \pi / 2}{2(\lambda+\mu)} \overleftarrow{(\lambda+2 \mu}$
(GCA) Primer
Figure 2

The Forward Problem

 - After shifiting the data, the characteristit 90° p phase should
in the phase spectrogram (or phase--0-gram) asin fig. 5 .

Preliminary results

-We observe the characteristic phase delay between seismic and infrasound synthetic waveforms in the cross-correlation and phase-o-gram
-Synthetic acoustic and GCA data show coherence and retrograde particle motion

- Pagan explosion shows coherence and phase between
the seismic and acoustic traces
- Pagan data show Rayleigh wave-like particle motion

Next Steps

- Test separation distances with synthetic data

Add noise (white and pink) to synthetic data and test method at various SNRs

- Test methodology with other data sets: Chelyabinsk neteor; and Pagan Cleveland, Pavlof and Calbuco Volcanoes

[^0]Acknowledgements
This work is partially funded by: NSF-EAR 1331084.

[^0]: References

